Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HCT) is an effective therapeutic procedure to treat hematological malignancies. However, the benefit of allo-HCT is limited by a major complication, chronic graft-versus-host disease (cGVHD). Since transmembrane and secretory proteins are generated and modified in the endoplasmic reticulum (ER), the ER stress response is of great importance to secretory cells including B cells. By using conditional knock-out (KO) of XBP-1, IRE-1α or both specifically on B cells, we demonstrated that the IRE-1α/XBP-1s pathway, one of the major ER stress response mediators, plays a critical role in B cell pathogenicity on the induction of cGVHD in murine models of allo-HCT. Endoribonuclease activity of IRE-1α not only activates XBP-1s transcription factor by converting unspliced XBP-1 (XBP-1u) mRNA into spliced XBP-1 (XBP-1s) mRNA but also cleaves other ER-associated mRNAs through regulated IRE-1α-dependent decay (RIDD). Besides, it is known that ablation of XBP-1s production leads to unleashed activation of RIDD. Therefore, we hypothesized that RIDD plays an important role in B cells during cGVHD development. In this study, we found that B cells deficient for XBP-1s reduced ability to induce cGVHD, which however was reversed by inactivation of IRE-1α, highlighting the role of RIDD in controlling cGVHD (Fig. A). Activation of RIDD targets IgM mRNA of (Fig. B), a contributor to organ damage and fibrosis in cGVHD, which correlated with dysregulated expression of MHC II and costimulatory molecules such as CD86, CD40, and ICOSL in B cells (Fig. C). Alloreactive T cells need to be primed by APCs to initiate GVHD, and specifically, CD86 and CD40 mediated-costimulation from APCs has been demonstrated to play an essential role in eliciting cGVHD. We demonstrated that alloreactivity of T cells, especially CD4 T cells, can be recovered by suppressing RIDD in XBP-1s-deficient B cells (Fig. D). Since IRE-1α carrying a S729A mutation shows ablated RIDD activity without effect on splicing XBP-1 mRNA, we investigated the contribution of B cells from S729A knock-in mice to confirm the role of RIDD in B cells. We found that B cells from S729A mice increased GVHD severity (Fig. E). S729A B cells showed significant increases in IgM secretion (Fig. F), GC cell differentiation (Fig. G), and the expression levels of MHCII and co-stimulatory factors (Fig. H). In conclusion, these results provide a novel insight on how ER stress response regulates B cell activity after allo-HCT and suggest RIDD is an important mediator for reducing cGVHD pathogenesis.
No relevant conflicts of interest to declare.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal